This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK



## Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

# Antiproliferative and Protein Kinase Binding Activities of Some $N^5$ , 5'-bisureido 5'-Amino-5'-Deoxyadenosine Derivatives

Matt A. Peterson<sup>a</sup>; Marcelio Oliveira<sup>a</sup>; Michael A. Christiansen<sup>a</sup>

<sup>a</sup> Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA

To cite this Article Peterson, Matt A., Oliveira, Marcelio and Christiansen, Michael A.(2009) 'Antiproliferative and Protein Kinase Binding Activities of Some N, 5'-bis-ureido 5'-Amino-5'-Deoxyadenosine Derivatives', Nucleosides, Nucleotides and Nucleic Acids, 28: 5, 394 - 407

To link to this Article: DOI: 10.1080/15257770903044432 URL: http://dx.doi.org/10.1080/15257770903044432

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Nucleosides, Nucleotides and Nucleic Acids, 28:394-407, 2009

Copyright © Taylor & Francis Group, LLC ISSN: 1525-7770 print / 1532-2335 online DOI: 10.1080/15257770903044432



## ANTIPROLIFERATIVE AND PROTEIN KINASE BINDING ACTIVITIES OF SOME N<sup>6</sup>, 5'-BIS-UREIDO 5'-AMINO-5'-DEOXYADENOSINE **DERIVATIVES**

### Matt A. Peterson, Marcelio Oliveira, and Michael A. Christiansen

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA

 $\Box$  Two novel  $N^6, 5'$ -bis-ureido 5'-amino-5'-deoxyadenosine derivatives are shown to inhibit tumor cell growth in the NCI 60 human tumor cell panel. Compounds 2c and 2d exhibited  $GI_{50}$  values of  $1-6 \mu M$  in 35 and 14 cell lines, respectively. Compound 2c was shown to selectively inhibit binding of protein kinases to immobilized ATP-binding site ligands via a competitive binding assay (11 of 353 protein kinases inhibited by  $\geq 30\%$  at 10  $\mu M$  compound concentration). Enzyme inhibition assays revealed modest inhibition for PAK4 and FMS (21 and 17%, respectively). A brief SAR study suggests that a 2'-O-TBDMS is necessary for antiproliferative activity.

protein kinase inhibitors; bis-ureidoadenosine derivatives; antiproliferative Keywords activity

#### INTRODUCTION

Interest in  $N^6$ -ureidoadenosine or 3'(5')-ureido-3'(5')-deoxyadenosine derivatives has been stimulated by the unique biological and physical properties exhibited by these compounds. [1-7] Various 3'-ureido derivatives have exhibited low- to submicromolar binding affinities for mutant human  $A_3(AR)$  receptors, an effect not observed with wild type  $A_3(AR)$ , thus offering orthogonal and selective activation of the reengineered receptor via an organ-targeted "neoceptor" approach. [1] Select  $N^6$ -ureido-purine and -adenosine derivatives were prepared as early as the 1970's as potential antiproliferative agents, [2] and the  $N^6$ -carbamoyl moiety continues to be exploited as a versatile means of linking such useful functionalities to adenosine as fluorescent chromophores, [3] duplex stabilizing aryl groups, [4]

Received 29 January 2009; accepted 20 March 2009.

This article is dedicated to Professor Morris J. Robins on the occasion of his 70th birthday.

Generous support from the BYU Cancer Research Center is gratefully acknowledged. The NCI is also thanked for performance of cytotoxicity evaluations.

Address correspondence to Matt A. Peterson, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602. E-mail: matt\_peterson@byu.edu

FIGURE 1 Putative HIV integrase inhibitors.

and reporter groups for spin-labeling studies. <sup>[5]</sup> 5'-Nitrosoureidoadenosine and other 5'-nitrosoureidonucleoside derivatives were prepared as potential antileukemia agents in the late 1970s. Negligible activities were reported for these compounds against murine L1210, and a 5'-N-methylureidoadenosine derivative was also ineffective against this cell line at concentrations as high as  $60 \ \mu M$ . <sup>[6]</sup>

Recently, we reported the synthesis and biological activities of some 3'-carboxymethyl-3'-deoxyadenosine derivatives designed to bind to the active site of HIV integrase (compounds **2a–h**, Figure 1). [7] A key intermediate in the synthesis of compounds **2a–h** was compound **1** which was prepared via stereospecific reduction of 2'-O-(tert-butyldimethylsilyl)-3'-deoxy-3'-[(ethoxycarbonyl)methylene]adenosine following the procedure of Robins et al. [8–9] Evaluation of compounds **2b–h** in HIV replication or HIV integrase assays revealed that **2b–h** were ineffective as inhibitors of HIV replication, and 3'-endprocessing and strand transfer activities of HIV integrase were not inhibited at the concentrations tested. Compounds **2c**, **2d**, **2g**, and **2h** did however show promising activities (IC<sub>50</sub> = 21.9–58.5  $\mu$ M) against MT2 cells in vitro. These activities prompted an evaluation of compounds **2c**, **2d**, **2g**, and **2h** in the NCI 60 human tumor cell line panel, and the results of such screening along with protein kinase binding activities are presented in this article.

#### RESULTS AND DISCUSSION

Compounds **2c**, **2d**, **2g**, and **2h** were submitted to the National Cancer Institute Developmental Therapeutics Program for screening against the NCI 60 panel of human tumor cells in vitro.<sup>[10]</sup> Results of the single dose

**SCHEME 1** Reagents and conditions: (a) PhN = C = O,  $CH_2Cl_2$ , 5 d; (b)  $H_2/Pd-C$ , EtOAc, 12 hours; (c)  $p-NO_2C_6H_4OCONHCH_3$ ,  $Na_2CO_3$ , EtOAc, 4 hours; (d) TFA,  $CH_2Cl_2$ ,  $H_2O$ , 4 hours.

 $(10 \,\mu\text{M})$  initial screen are illustrated in Table 1. Compounds 2c and 2d were superior to lactones 2g and 2h in the single dose growth inhibition assay. Only one cell line (renal cancer RXF393) was inhibited to any appreciable extent by 2g and 2h. In contrast, numerous cell lines were inhibited by 2c and 2d. To determine whether the inferior antiproliferative activities exhibited by compounds 2g and 2h reflected a structural requirement for the 2'-O-TBDMS, compounds 4a and 4b were prepared and tested (Scheme 1). The antiproliferative activities for 2g(h) and 4a(b) suggests that the 2'-O-TBDMS is a minimal requirement for anticancer activity (Table 2).

On the basis of the results from the single dose assay, compounds 2c and 2d were selected for multi-dose testing (Tables 3 and 4). In the multidose assays, compounds 2c and 2d exhibited low  $\mu M$  inhibition of all six leukemias tested. Numerous additional cell lines from the other subclasses were also inhibited at the low  $\mu M$  level. Compound **2d** appeared somewhat more toxic than **2c** toward the leukemia cell lines, and LC<sub>50</sub> values for **2d** ranged from 9.43–59.0  $\mu$ M for leukemias SR, HL-60(TB), and RPMI-8226. In contrast, LC<sub>50</sub> values for compound **2c** were >100  $\mu$ M for all leukemias except RPMI-8226. LC<sub>50</sub> values for RPMI-8226 were identical for both **2c** and **2d** (59.0  $\mu$ M). Compound **2c** was more cytotoxic than **2d** against all cell lines tested (16 cell lines showed LC<sub>50</sub> values <100  $\mu$ M for 2c compared to only three cell lines for compound 2d), but a majority of cell lines for 2c showed  $LC_{50}$  values > 100.0  $\mu$ M. Compound 2c also exhibited greater efficacy in cell growth inhibition than 2d, with 35 cell lines having  $GI_{50}$  values  $\leq 6 \mu M$  for 2c compared to only 14 cell lines inhibited at similar levels for compound 2d.

A COMPARE<sup>[11]</sup> analysis of the GI<sub>50</sub> data for compound **2c** suggested that protein kinases might be molecular targets for this compound. Accordingly, compound **2c** was screened against a commercially available panel of 353 protein kinases (KinomeScan, Ambit Biosciences, San Diego, CA, USA),<sup>[12]</sup> and the binding affinities of compound **2c** for these kinases were determined. The KinomeScan assay is a competitive binding assay involving phage-display of protein kinases and immobilized ATP-binding

**TABLE 1** Results of single dose growth inhibition assay (GI Percent at  $10 \mu M$ )<sup>a</sup>

| Cell Line             | 2c | 2d         | 2g  | 2h  | Cell Line       | 2c  | 2d  | 2g  | 2h  |
|-----------------------|----|------------|-----|-----|-----------------|-----|-----|-----|-----|
| <br>Leukemia          |    |            |     |     | CNS Cancer      |     |     |     |     |
| CCRF-CEM              | 50 | _          | 92  | 94  | SF-268          | 59  | 33  | 103 | 100 |
| HL-60(TB)             | 45 |            | 87  | 83  | SF-295          | 16  | -41 | 100 | 103 |
| K-562                 | 59 | -33<br>16  | 93  | 81  | SF-539          | 53  | 0   | 98  | 103 |
| MOLT-4                | 50 | -11        | 85  | 70  | SNB-19          | 94  | 37  | 106 | 103 |
| RPMI-8226             | 11 | -75        | 98  | 105 | SNB-75          | 63  | -7  | 94  | 97  |
| SR                    | 28 | -75<br>-56 | 90  | 90  | U251            | 34  | -15 | 110 | 96  |
| Non-Small Cell I      |    |            | 30  | 30  | Ovarian Cancer  | 31  | 13  | 110 | 30  |
| A549/ATCC             | 22 | 2          | 95  | 120 | IGROV1          | 51  | -37 | 91  | 92  |
| EKVX                  | 64 | 21         | 103 | 102 | OVCAR-3         | 80  | 8   | 95  | 92  |
| HOP-62                | 79 | 60         | 98  | 94  | OVCAR-4         | 61  | 19  | 106 | 106 |
| HOP-92                | 63 | -34        | 87  | 71  | OVCAR-5         | 100 | 44  | 96  | 97  |
| NCI-H226              | 76 | 41         | 106 | 99  | OVCAR-8         | 65  | 20  | 103 | 96  |
| NCI-H23               | 92 | 48         | 105 | 90  | SK-OV-3         | 94  | 41  | 106 | 102 |
| NCI-H322M             | 91 | 79         | 100 | 101 | Renal Cancer    | 31  | 11  | 100 | 102 |
| NCI-H460              | 48 | 18         | 112 | 114 | 786 <b>–</b> 0  | 76  | 48  | 105 | 98  |
| NCI-H522              | 80 | 66         | 107 | 106 | A498            | 71  | 46  | 100 | 94  |
| Colon Cancer          | 00 | 00         | 107 | 100 | ACHN            | 69  | 12  | 101 | 95  |
| COLO 205              | 43 | -100       | 104 | 110 | CAKI-1          | 82  | 43  | 101 | 100 |
| HCC-2998              | 62 | -13        | 106 | 93  | RXF393          | -45 | -68 | -29 | -23 |
| HCT-116               | 17 | 17         | 100 | 98  | SN12C           | 61  | 17  | 118 | 113 |
| HCT-15                | 56 | 12         | 91  | 92  | TK-10           | 44  | 7   | 101 | 99  |
| HT29                  | 27 | -26        | 109 | 110 | UO-31           | 57  | -7  | 79  | 64  |
| KM12                  | 43 | 17         | 106 | 106 | Breast Cancer   | 31  | •   | 7.5 | 01  |
| SW620                 | 71 | 24         | 105 | 106 | BT-549          | 82  | 26  | 104 | 100 |
| Melanoma              | /1 | 41         | 103 | 100 | HS578T          | 44  | 4   | 111 | 105 |
| LOX IMVI              | 50 | 19         | 93  | 63  | MCF7            | 18  | 3   | 92  | 98  |
| MALME-3M              | 55 | 12         | 97  | 100 | MDA-MB-231/ATCC | 51  | 15  | 123 | 99  |
| M14                   | 67 | 34         | 107 | 105 | MDA-MB-435      | 54  | 8   | 109 | 102 |
| SK-MEL-2              | 54 | -4         | 91  | 70  | NCI/ADR-RES     | 86  | 54  | 103 | 97  |
| SK-MEL-28             | 84 | 8          | 118 | 107 | T-47D           | 27  | -34 | 102 | 92  |
| SK-MEL-28<br>SK-MEL-5 | 58 | 26         | 106 | 110 | Prostate Cancer | 41  | -34 | 103 | 34  |
| UACC-257              | 88 | 6          | 122 | 125 | DU-145          | 63  | 25  | 109 | 110 |
| UACC-62               | 80 | 34         | 107 | 99  | PC-3            | 47  | -21 | 97  | 100 |
| UAGG-04               | 80 | 34         | 107 | 99  | 1 C-3           | 47  | -41 | 97  | 100 |

<sup>&</sup>lt;sup>a</sup>Growth inhibition percent calculated as:

site ligands.<sup>[13]</sup> Binding of phage-displayed protein kinases to immobilized ATP-binding site ligands was inhibited by compound  $2\mathbf{c}$  by  $\geq 30\%$  for 11 of the 353 protein kinases evaluated. A majority of the kinases were unaffected by  $2\mathbf{c}$  and binding inhibition of  $\leq 10\%$  was observed for > 225 kinases (Figure 2A). Such selectivity is a desirable property suggestive of the potential utility of derivatives of compound  $2\mathbf{c}$  in therapeutic applications.<sup>[14]</sup> Kinases for which binding was inhibited by  $\geq 30\%$  included EGFR, TYK2, FLT3, CSNK2A2, PAK3, MARK3, BTK, IKK- $\alpha$ , CSNK1G2, RPS6KA1, and BMPR1B,

 $<sup>[\,(</sup>T_i\text{-}T_Z)/\text{C-}T_Z)\,]\times 100 \text{ for } T_i\geq T_z$ 

 $<sup>\</sup>left[\left.(T_i\text{-}T_z)/T_z\right)\right]\times 100$  for  $T_i < T_z$ 

Where  $T_z$  = absorbance at t = 0;  $T_i$  = absorbance at t = 48 h (10  $\mu$ M test compound);

C = absorbance of control at t = 48 h.

**TABLE 2** Results of single dose growth inhibition assay (GI Percent at  $10 \mu M$ )<sup>a</sup>

| Cell Line                  | 4a  | <b>4b</b> | Cell Line       | 4a  | 4h  |  |  |
|----------------------------|-----|-----------|-----------------|-----|-----|--|--|
| Leukemia                   |     |           | CNS Cancer      |     |     |  |  |
| CCRF-CEM                   | 95  | 100       | SF-268          | 91  | 99  |  |  |
| HL-60(TB)                  | 84  | 79        | SF-295          | 119 | 123 |  |  |
| K-562                      | 90  | 60        | SF-539          | 84  | 91  |  |  |
| MOLT-4                     | 103 | _         | SNB-19          | 85  | 89  |  |  |
| RPMI-8226                  | 87  | 90        | SNB-75          | 60  | 66  |  |  |
| Non-Small Cell Lung Cancer |     | U251      | 94              | 86  |     |  |  |
| A549/ATCC                  | 103 | 99        | Ovarian Cancer  |     |     |  |  |
| EKVX                       | 102 | 113       | OVCAR-3         | 89  | 85  |  |  |
| HOP-62                     | 99  | 96        | OVCAR-4         | 90  | 92  |  |  |
| HOP-92                     | 14  | 71        | OVCAR-5         | 109 | 102 |  |  |
| NCI-H226                   | 109 | 99        | OVCAR-8         | 100 | 105 |  |  |
| NCI-H23                    | 87  | 95        | SK-OV-3         | 79  | 77  |  |  |
| NCI-H322M                  | 101 | 95        | Renal Cancer    |     |     |  |  |
| NCI-H460                   | 101 | 101       | 786-0           | 105 | 106 |  |  |
| NCI-H522                   | 104 | 92        | A498            | 87  | 103 |  |  |
| Colon Cancer               |     |           | ACHN            | 105 | 99  |  |  |
| HCC-2998                   | 96  | 78        | CAKI-1          | 73  | 55  |  |  |
| HCT-116                    | 81  | 89        | RXF393          | 97  | 114 |  |  |
| HCT-15                     | 98  |           | SN12C           | 95  | 96  |  |  |
| HT29                       | 99  | 97        | TK-10           | 134 | 152 |  |  |
| KM12                       | 90  | 89        | UO-31           | 74  | 98  |  |  |
| SW620                      | 91  | 98        | Breast Cancer   |     |     |  |  |
| Melanoma                   |     |           | BT-549          | 72  | _   |  |  |
| LOX IMVI                   | 100 | 99        | HS578T          | 102 | 93  |  |  |
| MALME-3M                   | 76  | 97        | MCF7            | 85  | 91  |  |  |
| M14                        | 89  | 108       | MDA-MB-231/ATCC | 107 | 90  |  |  |
| SK-MEL-2                   | 104 | 117       | MDA-MB-468      | 100 | 98  |  |  |
| SK-MEL-28                  | 92  | 100       | T-47D           | 75  | 78  |  |  |
| SK-MEL-5                   | 86  | 94        | Prostate Cancer |     |     |  |  |
| UACC-257                   | 107 | 105       | DU-145          | 94  | 95  |  |  |
| UACC-62                    | 92  | 88        | PC-3            | 71  | 85  |  |  |

<sup>&</sup>lt;sup>a</sup>Growth inhibition percent calculated as:

each of which has been implicated in various forms of cancer (Figure 2B). Binding inhibition was greatest for BMPR1B (or ALK6), a recently implicated modulator of estrogen receptor positive breast cancer. [15,16] The selective inhibition of binding of ALK6 compared to other members of the ALK family of protein kinases suggests that **2c** might be a useful probe for elucidating the role played by ALK6 in BMP-mediated signaling (Figure 2C). [17] Selective inhibition of binding was also observed for other protein kinase families (e.g., p38 and PAK kinase families; Figure 3).

Compound **2c** was also screened for its ability to inhibit a panel of cancer-related protein kinases (Figure 4). Activities for several of the protein

 $<sup>\</sup>left[\,(T_i\text{-}T_z)/\text{C-}T_z)\,\right]\,\times\,100$  for  $T_i\geq T_z$ 

 $<sup>[(</sup>T_i-T_z)/T_z)] \times 100 \text{ for } T_i < T_z$ 

Where  $T_z$  = absorbance at t = 0;  $T_i$  = absorbance at t = 48 h (10  $\mu$ M test compound);

C = absorbance of control at t = 48 h.

**TABLE 3** Results of multi dose growth inhibition assay for compound  $2c (\mu M)^a$ 

| Cell Line      | $GI_{50}$   | TGI     | $LC_{50}$ | Cell Line       | $GI_{50}$ | TGI     | $LC_{50}$ |
|----------------|-------------|---------|-----------|-----------------|-----------|---------|-----------|
| Leukemia       |             |         |           | CNS Cancer      |           |         |           |
| CCRF-CEM       | 6.69        | 88.6    | > 100.0   | SF-268          | 6.53      | 27.0    | 92.5      |
| HL-60(TB)      | 3.01        | _       | > 100.0   | SF-295          | 5.73      | > 100.0 | > 100.0   |
| K-562          | 3.59        | 32.9    | > 100.0   | SF-539          | 5.19      | > 100.0 | > 100.0   |
| MOLT-4         | 2.39        | 23.3    | > 100.0   | SNB-19          | 29.0      | > 100.0 | > 100.0   |
| RPMI-8226      | 1.09        | 4.57    | 59.0      | SNB-75          | 4.56      | > 100.0 | > 100.0   |
| SR             | 2.23        | 7.07    | > 100.0   | U251            | 4.69      | 20.9    | 76.0      |
| Non-Small Cell | Lung Cancer | •       |           | Ovarian Cancer  |           |         |           |
| A549/ATCC      | 4.18        | 19.2    | 79.1      | IGROV1          | 3.85      | 18.0    | 79.2      |
| EKVX           | 17.7        | > 100.0 | > 100.0   | OVCAR-3         | 4.59      | 17.2    | 91.3      |
| HOP-62         | 8.96        | 26.4    | 73.1      | OVCAR-4         | 1.23      | > 100.0 | > 100.0   |
| HOP-92         | < 0.01      | _       | 41.2      | OVCAR-5         | 31.1      | > 100.0 | > 100.0   |
| NCI-H226       | > 109.0     | > 100.0 | > 100.0   | OVCAR-8         | 4.92      | 77.2    | > 100.0   |
| NCI-H23        | 33.3        | > 100.0 | > 100.0   | SK-OV-3         | 21.0      | > 100.0 | > 100.0   |
| NCI-H322M      | > 100.0     | > 100.0 | > 100.0   | Renal Cancer    |           |         |           |
| NCI-H460       | 5.54        | 2.5     | > 100.0   | 786-0           | 2.00      | 5.21    | 17.9      |
| NCI-H522       | 4.36        | 85.7    | > 100.0   | A498            | 3.34      | 17.1    | > 100.0   |
| Colon Cancer   |             |         |           | ACHN            | 8.55      | > 100.0 | > 100.0   |
| COLO 205       | 3.84        | > 100.0 | > 100.0   | CAKI-1          | 29.7      | > 100.0 | > 100.0   |
| HCC-2998       | > 100.0     | > 100.0 | > 100.0   | RXF393          | 2.01      | 4.63    | 19.5      |
| HCT-116        | 3.20        | 16.1    | 45.6      | SN12C           | 9.10      | > 100.0 | > 100.0   |
| HCT-15         | 8.50        | > 100.0 | > 100.0   | TK-10           | 12.4      | 40.5    | > 100.0   |
| HT29           | 4.20        | > 100.0 | > 100.0   | UO-31           | 12.1      | 29.5    | 71.7      |
| KM12           | 3.95        | 20.9    | > 100.0   | Breast Cancer   |           |         |           |
| SW620          | 4.80        | 28.4    | > 100.0   | MCF7            | 3.42      | 45.1    | > 100.0   |
| Melanoma       |             |         |           | NCI/ADR-RES     | > 100.0   | > 100.0 | > 100.0   |
| LOX IMVI       | 5.46        | > 100.0 | > 100.0   | MDA-MB-231/ATCC | 3.96      | 41.3    | > 100.0   |
| MALME-3M       | 10.3        | > 100.0 | > 100.0   | HS578T          | 3.60      | 53.6    | > 100.0   |
| M14            | 2.51        | 11.6    | 7.86      | MDA-MB-435      | 6.21      | > 100.0 | > 100.0   |
| SK-MEL-2       | 5.42        | 33.1    | > 100.0   | BT-549          | > 100.0   | > 100.0 | > 100.0   |
| SK-MEL-28      | 6.85        | 20.2    | 48.7      | T-47D           | 2.55      | > 100.0 | > 100.0   |
| SK-MEL-5       | 4.34        | > 100.0 | > 100.0   | Prostate Cancer |           |         |           |
| UACC-257       | 5.68        | > 100.0 | > 100.0   | PC-3            | 2.25      | 4.85    | 12.5      |
| UACC-62        | > 100.0     | > 100.0 | > 100.0   | DU-145          | 4.97      | 19.4    | 78.4      |

 $<sup>^{</sup>a}GI_{50}$  = concentration at which cell growth is inhibited by 50%; TGI = concentration required to achieve total growth inhibition;  $LC_{50}$  = concentration required to achieve 50% reduction in measured protein after 48 h test period. TGI signifies a cytostatic effec;  $LC_{50}$  signifies a cytotoxic effect.

kinases were modestly enhanced at 20  $\mu$ M compound concentration and two of the kinases (FMS and PAK4) were inhibited.

#### CONCLUSIONS

Novel  $N^6$ ,5'-bis-ureido 5'-amino-5'-deoxyadenosine derivatives  $\bf 2c$  and  $\bf 2d$  inhibited proliferation of several human tumor cell lines in vitro.  ${\rm GI}_{50}$  values

 $<sup>\</sup>left[\,(T_i\text{-}T_z)/\text{C-}T_z)\,\right]\,\times\,100=50$  for  $GI_{50}$ 

 $T_i = T_z$  for TGI

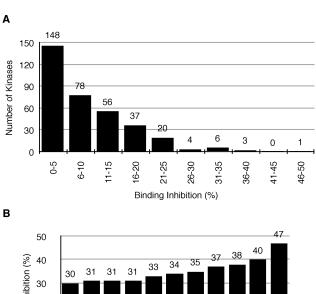
 $<sup>[(</sup>T_i-T_z)/T_z)] \times 100 = -50 \text{ for LC}_{50}$ 

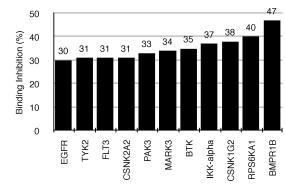
Where  $T_z$  = absorbance at t = 0;  $T_i$  = absorbance at t = 48 h; C = absorbance of control at t = 48 h.

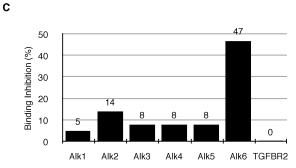
**TABLE 4** Results of multi dose growth inhibition assay for compound **2d**  $(\mu M)^a$ 

| Cell Line        | $GI_{50}$  | TGI     | $LC_{50}$ | Cell Line       | $GI_{50}$ | TGI     | $LC_{50}$ |
|------------------|------------|---------|-----------|-----------------|-----------|---------|-----------|
| Leukemia         |            |         |           | CNS Cancer      |           |         |           |
| CCRF-CEM         | 6.37       | > 100.0 | > 100.0   | SF-268          | 8.29      | > 100.0 | > 100.0   |
| HL-60(TB)        | 1.81       | 4.34    | 16.4      | SF-295          | 9.09      | > 100.0 | > 100.0   |
| K-562            | 3.12       | > 100.0 | > 100.0   | SF-539          | 22.3      | > 100.0 | > 100.0   |
| MOLT-4           | 2.23       | 2.23    | > 100.0   | SNB-19          | > 100.0   | > 100.0 | > 100.0   |
| RPMI-8226        | 1.58       | 1.58    | 59.0      | SNB-75          | 12.7      | > 100.0 | > 100.0   |
| SR               | 1.27       | 1.27    | 9.43      | U251            | 5.66      | > 100.0 | > 100.0   |
| Non-Small Cell I | Lung Cance | r       |           | Ovarian Cancer  |           |         |           |
| A549/ATCC        | 9.35       | > 100.0 | > 100.0   | IGROV1          | 3.72      | 65.7    | > 100.0   |
| EKVX             | 26.4       | > 100.0 | > 100.0   | OVCAR-3         | 7.11      | > 100.0 | > 100.0   |
| HOP-62           | 24.9       | > 100.0 | > 100.0   | OVCAR-4         | 53.0      | > 100.0 | > 100.0   |
| HOP-92           | 2.71       | 24.3    | > 100.0   | OVCAR-5         | 38.2      | > 100.0 | > 100.0   |
| NCI-H226         | 41.9       | > 100.0 | > 100.0   | OVCAR-8         | 9.02      | > 100.0 | > 100.0   |
| NCI-H23          | > 100.0    | > 100.0 | > 100.0   | SK-OV-3         | 52.7      | > 100.0 | > 100.0   |
| NCI-H322M        | > 100.0    | > 100.0 | > 100.0   | Renal Cancer    |           |         |           |
| NCI-H460         | 7.49       | > 100.0 | > 100.0   | 786-0           | 9.01      | > 100.0 | > 100.0   |
| NCI-H522         | 11.1       | > 100.0 | > 100.0   | A498            | 3.87      | 40.3    | > 100.0   |
| Colon Cancer     |            |         |           | ACHN            | 14.4      | > 100.0 | > 100.0   |
| COLO 205         | 12.3       | > 100.0 | > 100.0   | CAKI-1          | 53.8      | > 100.0 | > 100.0   |
| HCC-2998         | 30.6       | > 100.0 | > 100.0   | RXF393          | 9.74      | 38.0    | > 100.0   |
| HCT-116          | 4.20       | > 100.0 | > 100.0   | SN12C           | 85.3      | > 100.0 | > 100.0   |
| HCT-15           | 6.47       | > 100.0 | > 100.0   | TK-10           | 20.5      | > 100.0 | > 100.0   |
| HT29             | 5.37       | > 100.0 | > 100.0   | UO-31           | 7.79      | > 100.0 | > 100.0   |
| KM12             | 23.9       | > 100.0 | > 100.0   | Breast Cancer   |           |         |           |
| SW620            | > 100.0    | > 100.0 | > 100.0   | MCF7            | 5.59      | > 100.0 | > 100.0   |
| Melanoma         |            |         |           | NCI/ADR-RES     | > 100.0   | > 100.0 | > 100.0   |
| LOX IMVI         | 7.30       | > 100.0 | > 100.0   | MDA-MB-231/ATCC | 12.3      | > 100.0 | > 100.0   |
| MALME-3M         | 14.1       | > 100.0 | > 100.0   | HS578T          | 5.79      | > 100.0 | > 100.0   |
| M14              | 15.2       | > 100.0 | > 100.0   | MDA-MB-435      | 10.9      | > 100.0 | > 100.0   |
| SK-MEL-2         | 14.9       | 83.1    | > 100.0   | BT-549          | 29.0      | > 100.0 | > 100.0   |
| SK-MEL-28        | 7.77       | > 100.0 | > 100.0   | T-47D           | 13.9      | > 100.0 | > 100.0   |
| SK-MEL-5         |            | > 100.0 | > 100.0   | Prostate Cancer |           |         |           |
| UACC-257         | 22.6       | > 100.0 | > 100.0   | PC-3            | _         | _       | _         |
| UACC-62          | 41.9       | > 100.0 | > 100.0   | DU-145          | 1.66      | > 100.0 | > 100.0   |

 $<sup>^{</sup>a}$ GI<sub>50</sub> = concentration at which cell growth is inhibited by 50%; TGI = concentration required to achieve total growth inhibition; LC<sub>50</sub> = concentration required to achieve 50% reduction in measured protein after 48 h test period. TGI signifies a cytostatic effec; LC<sub>50</sub> signifies a cytotoxic effect.

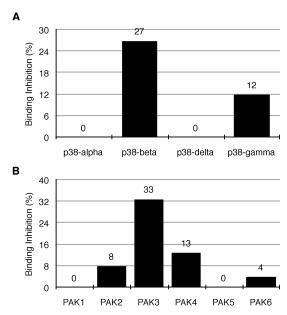

Where  $T_z$  = absorbance at t = 0;  $T_i$  = absorbance at t = 48 h; C = absorbance of control at t = 48 h.


in the low (1–6)  $\mu$ M region were exhibited in over half of the NCI 60 panel for compound **2c**. A competitive binding assay suggests that **2c** may bind to the ATP-binding site of several protein kinases. ALK6, a recently implicated modulator of estrogen positive breast cancer, was inhibited most significantly in this assay. Inhibition of phosphorylation of FMS and PAK4, two cancer-related protein kinases, was modest (17% and 21%, respectively)


 $<sup>\</sup>left[\,(T_i\text{-}T_z)/\text{C-}T_z)\,\right]\,\times\,100=50$  for  $GI_{50}$ 

 $T_i = T_z$  for TGI

 $<sup>[(</sup>T_i-T_z)/T_z)] \times 100 = -50 \text{ for LC}_{50}$ 



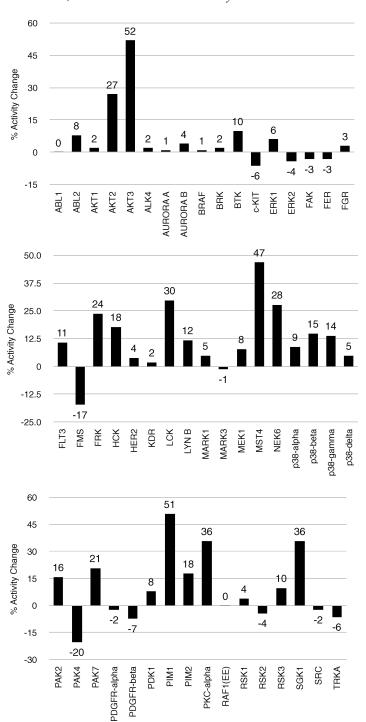





**FIGURE 2** Inhibition of binding of protein kinases to immobilized ATP-binding site ligands by compound 2c (10  $\mu$ M). (A) Results of 353 member KinomeScan competitive binding assay; (B) Protein kinases inhibited by  $\geq$ 30%; (C) Selective inhibition of binding of ALK6.

suggesting that the primary mechanism of antiproliferative activity may not be attributable to inhibition of these two enzymes. A minimal requirement for antiproliferative activity appears to be the presence of the sterically bulky 2'-O-TBDMS group. Future SAR studies will focus on the impact of the  $N^6$  and 5'-ureido groups.




**FIGURE 3** Inhibition of binding of protein kinases to immobilized ATP-binding site ligands by compound 2c (10  $\mu$ M). (A) Selective inhibition of p38 kinase family; (B) Selective inhibition of PAK kinase family.

## **Compound Preparation**

## 5-Deoxy-2',3'-O-isopropylidene-5'-[(N-methylcarbamoyl)amino]-N<sup>6</sup>-(N-phenylcarbamoyl)adenosine (4a)

To a flame dried flask containing compound 3 (454 mg, 1.37 mmol) was added phenylisocyanate (190 mg, 1.6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (16 mL). The resulting solution was stirred protected from moisture until TLC indicated that starting material had been consumed (5 days). The crude solution was added directly to a flash chromatography column and eluted (50  $\rightarrow$ 75%EtOAc/hexanes  $\rightarrow 10\%$ MeOH/EtOAc). Appropriate fractions were pooled and volatiles were evaporated under reduced pressure to give 5'-azido-5'-deoxy-2',3'-O-isopropylidene-N<sup>6</sup>-(N-phenylcarbamoyl) adenosine (491 mg, 79%): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 11.71 (s, 1H), 8.66 (s, 1H), 8.25 (s, 1H), 8.21 (s, 1H), 7.66 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.15 (t, I = 7.3 Hz, 1H), 6.19 (d, I = 2.5 Hz, 1H), 5.44 (dd, I = 6.3, 2.3 Hz, 1H), 5.07 (dd, I = 6.0, 3.5 Hz, 1H), 4.43 (dd, I = 9.0, 5.0 Hz, 1H), 3.63 (dd, J = 9.5, 4.8 Hz, 2H), 1.65 (s, 3H), 1.42 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz) δ 151.2, 151.1, 150.2, 149.9, 142.1, 137.9, 129.1, 124.1, 121.1, 120.4, 115.1, 90.7, 85.3, 84.1, 81.8, 52.3, 27.2, 25.4; MS (FAB) m/z  $452.17923 \text{ (MH}^+ [C_{20}H_{22}N_9O_4] = 452.17948).$ 

A solution of 5'-azido-5'-deoxy-2',3'-O-isopropylidene-N<sup>6</sup>-(N-phenylcar-bamoyl)adenosine (70 mg, 0.16 mmol) and 10% Pd–C (40 mg) in EtOAc (10 mL) was vigorously stirred for 15 hours under an atmosphere of H<sub>2</sub>



**FIGURE 4** Percent activity change in cancer-related protein kinases treated with 2c (20  $\mu$ M).

(balloon pressures). *p*-Nitrophenyl *N*-methylcarbamate (43 mg, 0.22 mmol) and anhydrous Na<sub>2</sub>CO<sub>3</sub> (45 mg, 0.43 mmol) were added, and the resulting mixture was stirred for 4 hours under N<sub>2</sub>. Solids were removed via filtration (celite/EtOAc), and volatiles were evaporated under reduced pressure. The crude residue was chromatographed (5  $\rightarrow$  10% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) to give **4a** (65 mg, 87%): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  12.10 (s, 1H), 9.79 (s, 1H), 8.69 (s, 1H), 8.68 (s, 1H), 7.56 (dd, *J* = 8.8, 0.8 Hz, 2H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 1H), 6.15 (d, *J* = 4.0 Hz, 1H), 5.84 (m, 1H), 5.27 (dd, *J* = 6.3, 3.8 Hz, 1H), 4.98 (dd, *J* = 6.3, 2.3 Hz, 1H), 4.77 (m, 1H), 4.52 (dd, *J* = 6.8, 2.8 Hz, 1H), 3.74 (ddd, *J* = 13.8, 7.4, 4.1 Hz, 1H), 3.38 (dt, *J* = 3.8, 14.8 Hz, 1H), 2.56 (d, *J* = 4.5 Hz, 3H), 1.65 (s, 3H), 1.40 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  159.2, 152.6, 150.9, 150.34, 150.30, 143.3, 137.2, 129.2, 124.9, 121.5, 121.2, 114.6, 91.6, 85.9, 83.9, 81.6, 41.8, 27.4, 26.9, 25.4; MS (FAB) m/z 483.2099 (MH<sup>+</sup> [C<sub>22</sub>H<sub>27</sub>N<sub>8</sub>O<sub>5</sub>] = 483.2099).

## 5'-Deoxy-5'-[(N-methylcarbamoyl)amino]- $N^6$ -(N-phenylcarbamoyl)adenosine (4b)

A solution of **4a** (10 mg, 0.021 mmol), TFA (100  $\mu$ L), and H<sub>2</sub>O (25  $\mu$ L) in CH<sub>2</sub>Cl<sub>2</sub> (500  $\mu$ L) was vigorously stirred at ambient temperature until TLC indicated complete conversion to baseline product (4 hours). Volatiles were removed under reduced pressure ( $\leq$ 25°C) and the crude was purified via flash chromatography (EtOAc/iPrOH/H<sub>2</sub>O, 4:1:2) to give **4b** (7 mg, 75%): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  11.75 (s, 1H), 10.21 (s, 1H), 8.71 (s, 1H), 8.70 (s, 1H), 7.61 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 6.10 (s, 1H), 5.97 (d, J = 6.0 Hz, 1H), 5.80 (s, 1H), 4.67 (t, J = 5.5 Hz, 1H), 4.09 (dd, J = 3.5, 5.0 Hz, 1H), 3.94–3.91 (m, 1H), 3.41 (dd, J = 14.3, 4.3 Hz, 1H), 3.26 (dd, J = 14.3, 6.3 Hz, 1H), 2.49 (s, 3H; overlaps with DMSO); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  159.1, 151.4, 151.2, 151.1, 150.2, 143.4, 138.9, 129.4, 123.7, 121.1, 119.9, 87.9, 84.9, 73.6, 71.6, 42.2, 26.8; MS (FAB) m/z 443.17757 (MH<sup>+</sup> [C<sub>19</sub>H<sub>23</sub>N<sub>8</sub>O<sub>5</sub>] = 443.17859).

## KinomeScan Competitive Binding Assay

This assay is based on ligand-affinity/protein kinase phage display and was employed essentially as described by Lockhart and co-workers. <sup>[13]</sup> In this assay, protein kinases are cloned into T7 bacteriophage which express the kinase fusion proteins on the phage capsid. T7 kinase-tagged phage are then screened for binding to ATP-binding-site ligands that have been immobilized on a solid support. Phage are screened for binding to the anchored ligands both in the presence of test compound and in its absence (control). Elution of the bound phage by free ligand (ATP-binding site ligand that is not immobilized on a solid support) followed by determination of the phage titre provides a reliable measure of the ability of test compounds to block binding of target kinases to resin-bound ATP-binding-site ligands.

This method has allowed rapid mapping of small molecule interactions with ATP-binding sites across a broad cross-section of disease related protein kinases and has been validated as a reliable tool for identifying ligands with strong affinities for ATP-binding sites in numerous protein kinases. [13] Analyses were performed in duplicate and the values reported in Figure 2A–C are averages for the two experiments.

Kinases screened in this assay included: AAK1, ABL1, ABL1(E255K), ABL1(F317I), ABL1(F317L), ABL1(H396P), ABL1(M351T), ABL1 (Q252H), ABL1(T315I), ABL1(Y253F), ABL2, ACVR1, ACVR1B, ACVR2A, ACVR2B, ACVRL1, ADCK3, ADCK4, AKT1, AKT2, AKT3, ALK, AMPK-alpha1, AMPK-alpha2, ANKK1, ARK5, AURKA, AURKB, AURKC, AXL, BIKE, BLK, BMPR1A, BMPR1B, BMPR2, BMX, BRAF, BRAF (V600E), BRSK1, BRSK2, BTK, CAMK1, CAMK1D, CAMK1G, CAMK2A, CAMK2B, CAMK2D, CAMK2G,

CAMK4, CAMKK1, CAMKK2, CDC2L1, CDC2L2, CDK11, CDK2, CDK3, CDK5, CDK7, CDK8, CDK9, CDKL2, CHEK1, CHEK2, CIT, CLK1, CLK2, CLK3, CLK4, CSF1R, CSK, CSNK1A1L, CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3, CSNK2A1, CSNK2A2, DAPK1, DAPK2, DAPK3, DCAMKL1, DCAMKL2, DCAMKL3, DDR1, DDR2, DLK, DMPK, DMPK2, DRAK1, DRAK2, DYRK1B, EGFR, EGFR(E746-A750del), EGFR(G719C), EGFR(G719S), EGFR(L747-E749del, A750P), EGFR(L747-S752del, EGFR(L747-T751del,Sins), EGFR(L861Q), P753S), EGFR(L858R), EGFR(S752-I759del), EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4, ERBB2, ERBB4, ERK1, ERK2, ERK3, ERK4, ERK5, ERK8, FER, FES, FGFR1, FGFR2, FGFR3, FGFR3(G697C), FGFR4, FGR, FLT1, FLT3, FLT3(D835H), FLT3(D835Y), FLT3(ITD), FLT3(K663Q), FLT3(N841I), FLT4, FRK, FYN, GAK, GCN2(Kin.Dom.2,S808G), GSK3A,

GSK3B, HCK, HIPK1, IGF1R, IKK-alpha, IKK-beta, IKK-epsilon, INSR, INSRR, IRAK3, ITK, JAK1 (Kin.Dom.1), JAK1(Kin.Dom.2), JAK2(Kin.Dom.2), JAK3(Kin.Dom.2), JNK1, JNK2, JNK3, KIT, KIT (D816V), KIT(V559D), KIT(V559D,T670I), KIT(V559D,V654A), LATS1, LATS2, LCK, LIMK1, LIMK2, LKB1, LOK, LTK, LYN, MAP3K3, MAP3K4, MAP3K5, MAP4K1, MAP4K2, MAP4K3, MAP4K4, MAP4K5, MAPKAPK2, MAPKAPK5, MARK1, MARK2, MARK3, MARK4, MEK1, MEK2, MEK3, MEK4, MEK6, MELK, MERTK, MET, MINK, MKNK1, MKNK2, MLCK, MLK1, MLK2, MLK3, MRCKA,

MRCKB, MST1, MST1R, MST2, MST3, MST4, MUSK, MYLK, MYLK2, MYO3A, MYO3B, NDR2, NEK1, NEK2, NEK5, NEK6, NEK7, NEK9, NLK, p38-alpha, p38-beta, p38-delta, p38-gamma, PAK1, PAK2, PAK3, PAK4, PAK6, PAK7/PAK5, PCTK1, PCTK2, PCTK3, PDGFRA, PDGFRB, PDPK1, PFTAIRE2, PFTK1, PHKG1, PHKG2, PIK3C2B, PIK3CA, PIK3CA(E545K), PIK3CB, PIK3CD, PIK3CG, PIM1, PIM2, PIM3, PIP5K1A, PIP5K2B, PKAC-alpha, PKAC-beta, PKMYT1, PKN1, PKN2, PLK1, PLK3, PLK4,

PRKCD, PRKCE, PRKCH, PRKCQ, PRKD1, PRKD2, PRKD3, PRKG1, PRKG2, PRKR, PRKX, PTK2, PTK2B, PTK6, RAF1, RET, RET(M918T), RET(V804L), RET(V804M), RIOK1, RIOK2, RIOK3, RIPK1, RIPK2, RIPK4, ROCK2, ROS1, RPS6KA1(Kin.Dom.1), RPS6KA1 (Kin.Dom.2), RPS6KA2(Kin.Dom.1), RPS6KA2(Kin.Dom.1), RPS6KA4

(Kin.Dom.1), RPS6KA4(Kin.Dom.2), RPS6KA5(Kin.Dom.1), RPS6KA5 (Kin.Dom.2), RPS6KA6 (Kin.Dom.1), RPS6KA6(Kin.Dom.2), SgK085, SgK110, SLK, SNARK, SNF1LK, SNF1LK2, SRC, SRMS, SRPK1, SRPK2, SRPK3, STK16, STK33, STK35, STK36, SYK, TAK1, TAOK1, TAOK3, TEC, TESK1, TGFBR1, TGFBR2, TIE1, TIE2, TLK1, TLK2, TNIK, TNK1, TNK2, TNNI3K, TRKA, TRKB, TRKC, TSSK1, TTK, TXK, TYK2(Kin.Dom.1), TYK2(Kin.Dom.2), TYRO3, ULK1, ULK2, ULK3, VEGFR2, WEE1, WEE2, YANK2, YANK3, YES, YSK1, ZAK, ZAP70.

## Kinase Inhibition Assay

The various protein kinase targets employed in the kinase inhibition assay were cloned, expressed, and purified in-house at SignalChem Inc. (Richmond, BC, Canada) using proprietary methods. Quality control testing is routinely performed on each of the SignalChem targets to ensure compliance to acceptable standards. Protein substrates employed in the target profiling process were synthesized internally. <sup>33</sup>P-ATP was purchased from PerkinElmer. All other materials were of standard grade. Compound **2c** was supplied to SignalChem in a powder form. It was reconstituted in DMSO to form a stock solution which was then diluted with 10% DMSO to form a working stock solution (100  $\mu$ M) that was then profiled against the various protein kinase targets. Protein kinase assays were performed in triplicate at ambient temperature for 20–40 minutes (depending on the target) in a final volume of 25  $\mu$ l according to the following assay reaction recipe: Component 1: 5  $\mu$ l of diluted active protein kinase target (~10-40 nM final protein concentration in the assay); Component 2: 5  $\mu$ l of stock solution of substrate (1–5  $\mu$ g of peptide or protein substrate); Component 3: 5  $\mu$ l of kinase assay buffer or protein kinase activator in kinase assay buffer; Component 4: 5  $\mu$ l of Compound **2c** (100  $\mu$ M stock solution) or 10% DMSO; Component 5: 5  $\mu$ l of <sup>33</sup>P-ATP (25  $\mu$ M stock solution, 0.8  $\mu$ Ci).

The assay was initiated by the addition of  $^{33}$ P-ATP and the reaction mixture incubated at ambient temperature for 20–40 minutes, depending on the protein kinase target. After the incubation period, the assay was terminated by spotting 10  $\mu$ l of the reaction mixture onto a Millipore Multiscreen plate (Billerica, MA, USA). The Millipore Multiscreen plate was washed 3 times for approximately 15 minutes each in a 1% phosphoric acid solution. The radioactivity on the P81 plate was counted in the presence of scintillation fluid in a Trilux scintillation counter. Blank control, which

included all the assay components except the addition of the appropriate substrate (replaced with equal volume of assay dilution buffer), was set up for each protein kinase target. The corrected activity for each protein kinase target was determined by removing the blank control value. Activity of the 50 kinase targets in the presence of compound **2c** is shown in Figure 4.

#### REFERENCES

- Gao, Z.-G.; Duong, H.T.; Sonina, T.; Kim, S.-K.; Van Rompaey, P.; et al. A. Orthogonal activation
  of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. *J. Med. Chem.* 2006, 49, 2689–2702.
- Hong, C.I.; Chheda, G.B.; Dutta, S.P.; O'Grady-Curtis, A.; Tritsch, G.L. Synthesis and biological activity of analogs of naturally occurring 6-ureidopurines and their nucleosides. *J. Med. Chem.* 1973, 16, 139–147.
- Sigmund, H.; Pfleiderer, W. Nucleotides Part LXXI: A new type of labelling of nucleosides and nucleotides. Helvetica Chim. Acta 2003, 86, 2299–2334.
- Nakano, S.-I.; Uotani, Y.; Nakashima, S.; Anno, Y.; Fujii, M.; Sugimoto, N. Large stabilization of a DNA duplex by the deoxyadenosine derivatives tethering an aromatic hydrocarbon group. *J. Am. Chem. Soc.* 2003, 125, 8086–8087.
- Anzai, K.; Hunt, J.B.; Zon, G. Reactions of ethyl and phenyl chloroformate with adenosine derivatives as an entry to N6-ureido-linked spin-labeled adenosine and other modified adenosines. *J. Org. Chem.* 1982, 47, 4281–4285.
- 6. Montgomery, J.A.; Thomas, H.J. Nitrosoureidonucleosides. J. Med. Chem. 1979, 22, 1109-1113.
- Peterson, M.A.; Ke, P.; Shi, H.; Jones, C.; McDougall, B.R.; Robinson, W.E. Design, synthesis, and antiviral evaluation of some 3'-carboxymethyl-3'-deoxyadenosine derivatives. *Nucleos. Nucleotid. Nucl.* 2007, 26, 499–519.
- Robins, M.J.; Sarker, S.; Xie, M.; Zhang, W.; Peterson, M.A. Synthesis of 2', 3'-fused (3.3.0)γ-butyrolactone-nucleosides and coupling with amino nucleosides to give amide-linked nucleotide-dimer analogues. *Tetrahedron Lett.* 1996, 37, 3921–3924.
- Peterson, M.A.; Nilsson, B.L.; Sarker, S.; Doboszewski, B.; Zhang, W.; Robins, M.J. Amide-lined ribonucleoside dimers derived from 5'-amino-5'deoxy- and 3'-(carboxymethyl)-3'-deoxynucleoside precursors. J. Org. Chem. 1999, 64, 8183–8192.
- 10. Holbeck, S.L. Update on NCI in vitro drug screening utilities. Eur. J. Cancer 2004, 40, 785-793.
- Paull, K.D.; Shoemaker, R.H.; Hodes, L.; Monks, A.; Scudiero, D.A.; et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. *J. Natl. Cancer Inst.* 1989, 81, 1088–92.
- 12. Ambit Biosciences. March, 2009 < http://www.ambitbio.com/>
- Fabian, M.A.; Biggs, W.H. III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; et al. A Small moleculekinase interaction map for clinical kinase inhibitors. *Nature Biotech.* 2005, 23, 329–336.
- Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E., et al. A Quantitative analysis
  of kinase inhibitor selectivity. *Nature Biotech.* 2008, 26, 127–132.
- Helms, M.W.; Packeisen, J.; August, C.; Schittek, B.; Boecker, W.; Brandt, B.H.; Buerger, H. First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J. Pathol. 2005, 206, 366–376.
- Alarmo, E.-L.; Kuukasjärvi, T.; Karhu, R.; Kallioniemi, A. A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res. Breast Cancer Res. 2007, 103, 239–246.
- Anderson, G.J.; Darshan, D. Small-molecule dissection of BMP signaling. Nature Chem. Biol. 2008, 4, 15–16.